Forklift Control Valve

Forklift Control Valves - The earliest mechanized control systems were being utilized over two thousand years ago. In Alexandria Egypt, the ancient Ktesibios water clock made in the third century is thought to be the very first feedback control device on record. This clock kept time by means of regulating the water level within a vessel and the water flow from the vessel. A popular style, this successful machine was being made in a similar way in Baghdad when the Mongols captured the city in 1258 A.D.

Throughout history, various automatic equipments have been used in order to accomplish specific tasks or to simply entertain. A common European design during the seventeenth and eighteenth centuries was the automata. This piece of equipment was an example of "open-loop" control, featuring dancing figures which will repeat the same task over and over.

Closed loop or feedback controlled tools consist of the temperature regulator common on furnaces. This was developed during the year 1620 and accredited to Drebbel. One more example is the centrifugal fly ball governor developed in the year 1788 by James Watt and utilized for regulating the speed of steam engines.

J.C. Maxwell, who discovered the Maxwell electromagnetic field equations, wrote a paper in 1868 "On Governors," that was able to explain the instabilities demonstrated by the fly ball governor. He used differential equations to explain the control system. This paper exhibited the usefulness and importance of mathematical models and methods in relation to comprehending complex phenomena. It likewise signaled the start of systems theory and mathematical control. Previous elements of control theory had appeared before by not as dramatically and as convincingly as in Maxwell's analysis.

Within the next one hundred years control theory made huge strides. New developments in mathematical methods made it feasible to more accurately control considerably more dynamic systems as opposed to the original fly ball governor. These updated techniques comprise different developments in optimal control during the 1950s and 1960s, followed by progress in robust, stochastic, adaptive and optimal control techniques in the 1970s and the 1980s.

New technology and applications of control methodology have helped make cleaner auto engines, more efficient and cleaner chemical processes and have helped make communication and space travel satellites possible.

At first, control engineering was carried out as a part of mechanical engineering. Additionally, control theory was initially studied as part of electrical engineering as electrical circuits can often be simply explained with control theory methods. Now, control engineering has emerged as a unique discipline.

The first control partnerships had a current output that was represented with a voltage control input. In view of the fact that the correct technology so as to implement electrical control systems was unavailable at that moment, designers left with the option of slow responding mechanical systems and less efficient systems. The governor is a very effective mechanical controller which is still often used by some hydro plants. Ultimately, process control systems became accessible prior to modern power electronics. These process controls systems were usually used in industrial applications and were devised by mechanical engineers using pneumatic and hydraulic control machines, many of which are still being used today.